
Extending the Raven Surgical Robot System
Amanda Gentzel
Advisor: Jacob Rosen

The Raven Surgical Robot System
The Bionics Lab at the University of California Santa Cruz contains the Raven Surgical Robot
System, a system consisting of four robotic arms with surgical tools. The arms can be controlled
by a surgeon using haptic devices, allowing him to operate the arms remotely. This means that
the surgeon does not need to be anywhere near the patient to operate, allowing surgery to be
performed in remote or hard-to-reach locations, such as the battlefield. The Raven system also
allows for two surgeons to operate collaboratively, each controlling two arms and each
potentially in completely separate locations.

The Raven Surgical Robot System

Simulation
In order to effectively operate the robotic arms, training is required. However, surgeons would
not necessarily always have access to the actual arms. To aid in training, then, a simulation can
be used. The simulation, written in C++ using OpenGL, contains simulated arms that are
controlled using SensAble Phantom Omni haptic devices in the same manner as the physical
arms. Each haptic device keeps track of its position, and the simulation constantly records the
change in that position. This change is used to update the location of the tool on the end of
each simulated arm. By knowing the location of the tool, inverse kinematics can be used to

calculate the joint angles of the arm which are used to correctly orient the different sections of
the arm in the simulation.

The SensAble Phantom Omni haptic devices

Extending the Simulation
In order to improve the simulation, I worked on three main things. First, I increased the
number of arms present in the simulation from two to four. The kinematics calculations were
already in place for the additional arms, so all that was required was some additional checks to
position the arms in the correct places as well as a couple simple variable changes. My second
goal was to increase the realism of the simulation by replacing the original, simple models of
the arms with more detailed models from SolidWorks. Finally, I worked on adding a surgical
training task to the simulation.

Modeling the Arms
There are currently two options for the graphics of the simulation. If the public variable
useObjFiles in Main.cpp is set to false, the arms are simply represented using OpenGL
primitives. If useObjFiles is set to true, the graphics are instead rendered using more detailed
representations from SolidWorks. The detailed models are exported from SolidWorks as .obj
files. This is a very transparent file format that simply lists all the vertices in a three-
dimensional model and then specifies which vertices make up faces. In order to make the arm
move realistically, the detailed representation had to be stored in four different obj files per
arm, one for each independently moving part. Since there are two possible orientations for an
arm (the first and second arms are mirror images of each other, as are the third and fourth),
eight total obj files are needed.

When the simulation is run and useObjFiles is true, the obj files are loaded. An open source obj
loader was found online and used to actually read in the vertices, vertex normal and faces from

the obj files. Each element is stored as a struct, and these structs are stored in three arrays for
each model (for the vertices, normal, and faces). Each model is defined by a struct containing
these three arrays, so each arm is described by four of these model structs, one for each
moving part. Each time the scene is drawn, the program loops over all of the faces and, using
OpenGL triangles, draws them using the coordinates in the vertex and vertex normal arrays.
Each model is then translated to its origin, rotated by the joint angles retrieved from the inverse
kinematics, and translated into position. In this way, the detailed models move in the same
way as the simple ones. This can be seen by commenting out the four else statements in the
DrawRobot function in Main.cpp.

Simple graphics in the simulation (when useObjFiles is set to false)

SolidWorks graphics from obj files (when useObjFiles is set to true)

Creating a Task
When the variable drawTheTask in Main.cpp is set to true, a surgical training task is drawn in
the simulation. The base and pegs are drawn using OpenGL primitives. The triangular objects
that can rest on the pegs are a bit more complicated. Their basic shape is a triangular prism
with a cylinder cut through it. However, OpenGL does not provide any functions for creating
such a shape. The shape, then, is created in multiple parts. To define the basic shape, a hollow
cylinder is drawn, followed by a hollow triangular prism. (created as a cylinder with three slices)
The space between them is filled using an OpenGL quadrilateral strip. By calculating the
equation of the circle and the three lines comprising the triangle, thin quadrilaterals can be
drawn between the two, filling the space.

With the task drawn, the next goal was to allow the user to manipulate it with the arms. This
consists of three steps: picking up an object, moving it around with the arm, and dropping it.
To pick up an object, two conditions must be met. First, the tool must be within a small radius
of the center of the object, and second, the tool must be closed. Once these conditions are
met, the object is considered grabbed. Once grabbed, the object needs to move around with
the tool. This is accomplished by drawing the object using the same model view matrix that
was used to draw the tool. This means that, when the tool is moved or rotated, the object
moves in the exact same way. At any point, the user can press the button to open the tool,
leading to the third component of manipulating the task: dropping an object. This action is
triggered when the tool holding the object is opened. The object should then fall back to the
board from its final held location. At this point, this location is acquired by using the existing
posMatrix of the arm. This method, however, does not quite work at this point. This is because
posMatrix defines the location where the tool connects to the arm, not the tip of the tool. In
order for the dropping to function properly, the angle of the tool needs to be taken into
account to calculate the location of the tip of the tool.

Future Work
There is still a lot of work that can be done with this simulation. One major improvement
would be to add haptic feedback, which would allow the user to actually feel the simulated task
and interact with it more realistically. In its current state, with the simple graphics view of the
simulation, the grabbing of objects is simplistic, and dropping them is not quite functional.
With the more realistic graphics, an issue with the kinematics needs to be addressed before it
can interact with the task. For both the simple and realistic models, the position of the haptic
device is tracked, and from that, the angles of the joints of the arm are calculated. However,
when the realistic arms are drawn using those joint angles, the tool does not move in the same
way as the tool on the simple arms, despite the fact that the joint angles seem to correspond.
Once this discrepancy is addressed, the grabbing functionality will function in the same way,
regardless of the chosen graphical style. Other future work could involve incorporating more
training tasks and allowing for collaborative control of the simulation.

